ANNUAL WATER OUALITY REPORT

Reporting Year 2021

PWS ID#: CA3610025

We've Come a Long Way

nce again, we are proud to present our annual water quality report covering the period between January 1 and December 31, 2021. In a matter of only a few decades, drinking water has become exponentially safer and more reliable than at any other point in human history. Our exceptional staff continues to work hard every day-at all hours-to deliver the highest-quality drinking water without interruption. Although the challenges ahead are many, we feel that by relentlessly investing in customer outreach and education, new treatment technologies, system upgrades, and training, the payoff will be reliable, high-quality tap water delivered to you and your family.

Community Participation

o learn more about the Joshua Basin Water District, please log onto our website at: www.jbwd.com, or attend any of

our regularly scheduled meetings of the Board of Directors, Citizens Advisory Committee, Finance Committee, and our Water Resources & Operations Committee. The Board of Directors meets the first and third Wednesday of each month at 61750 Chollita Road, Joshua Tree, CA 92252, or attend via Zoom. To inquire about meeting times, please call (760) 974-0072, or email: bwaszak@jbwd.com.

Where Does My Water Come From?

ur water source comes from District-owned wells located throughout the community that draw groundwater from underground aquifers. The two aquifers that supply our water is the Joshua Tree groundwater basin and the Copper Mountain groundwater basin.

Lead in Home Plumbing

f present, elevated levels of lead can cause serious health problems, especially for pregnant women and young

When the well is dry, we know the worth of water.

children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead

exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or online at: www.epa.gov/safewater/lead.

Important Health Information

Come people may be more vulnerable to contaminants Oin drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or online at: http:// water.epa.gov/drink/hotline.

OUESTIONS? For more information about

this report, or for any questions relating to your drinking water, please call Sarah Johnson, General Manager, at (760) 366-8438.

66

—Benjamin Franklin

99

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems;

Radioactive Contaminants, that can be naturally occurring or can be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Safeguard Your Drinking Water

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- · Pick up after your pets.
- If you have your own septic system, properly maintain it to reduce leaching to water sources, or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use U.S. EPA's Adopt Your Watershed to locate groups in your community.
- Organize a storm drain stenciling project with others in your neighborhood. Stencil a message next to the street drain reminding people: "Dump No Waste – Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

Think Before You Flush!

Flushing unused or expired medicines can be harmful to your drinking water. Properly disposing of unused or expired medication helps protect you and the environment. Keep medications out of our waterways by disposing responsibly. To find a convenient drop-off location near you, please visit: https://bit.ly/3IeRyXy.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. And, the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES												
SUBSTANCE (UNIT OF MEASURE)			YEA SAMPI	R LED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUN	IT RANG	E BH VIOLA	ΓΙΟΝ	TYPICAL SOURCE	
Chlorine (ppm)			202	1	[4.0 (as Cl2)]	[4 (as Cl2)]	1.00	0.58–1	.14 N	0	Drinking water disinfectant added for treatment	
Chromium [Total] ¹ (ppb)			201	9	50	(100)	28.5	24–3	24–33 No		Discharge from steel and pulp mills and chrome plating; erosion of natural of	leposits
Fluoride (ppm)			202	.0	2.0	1	0.63	0.46–0	46–0.80 No		Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories	
Gross Alpha Particle	Activity (pC	Ci/L)	202	1	15	(0)	1.74	1.74 NA		0	Erosion of natural deposits	
Hexavalent Chromium (ppb)			201	9	NS ²	0.02	30	25–3	25–35 No		Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits	
Nitrate [as nitrogen] (ppm)			202	1	10	10	4.04	2.1–6	-6.9 No		Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	
TTHMs [Total Trihalomethanes]– Stage 1 (ppb)]—	202	1	80	NA	14.0	3.0–2	3.0–25 N		By-product of drinking water disinfection	
Tap water samples were c	ollected for le	ead and	copper a	nalyses	from sampl	e sites thro	ughout the	community				
SUBSTANCE YEAR (UNIT OF MEASURE) SAMPLED AL		AL	PH (MC	Phg Amou ICLG) (90		T DETECTE TH %ILE)	D SITE	S ABOVE AL/ DTAL SITES	VIOLATION	I TYI	PICAL SOURCE	
Copper (ppm)	2019	1.3	0.	.3	().068		0/22	No	In we	ternal corrosion of household plumbing systems; erosion of natural deposits; leaching from ood preservatives	
Lead (ppb)	2019	15	0.	.2		ND		0/22	No	In ma	nternal corrosion of household water plumbing systems; discharges from industrial nanufacturers; erosion of natural deposits	
SECONDARY SUBS	STANCES											
SUBSTANCE Y (UNIT OF MEASURE) SAN		YE SAMI	EAR MPLED SMCL		PH (MCI	G AMOUNT G) DETECTED		RANGE LOW-HIGH	VIOLATION	ТҮР	PICAL SOURCE	
Chloride (ppm)		20)19	500	N	S	13.8	6.0–17	No	Ru	noff/leaching from natural deposits; seawater influence	
Specific Conductance (µS/cm) 2		20	020	1,600	N	S	355	250-480	No	Sub	bstances that form ions when in water; seawater influence	
Sulfate (ppm)		20	020	500	N	S	48.7	7.2–120	No	Ru	noff/leaching from natural deposits; industrial wastes	
Total Dissolved Solids (ppm) 20		020	1,000	N	S	191	110-300	No	Ru	noff/leaching from natural deposits		
Turbidity (NTU)20		20	021	5	N	S	0.08	0.1-0.33	No	Soi	il runoff	
Zinc (ppm) 20		020	5.0	N	S	ND	NA	No	Ru	noff/leaching from natural deposits; industrial wastes		

UNREGULATED SUBSTANCES ³			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH
Bromoform (ppb)	2021	6.6	1.1-11.0
Chloroform (ppb)	2021	1.5	ND-1.3
Dibromochloromethane (ppb)	2021	4.9	1.2-8.6
Hardness, Total [as CaCO3] (ppm)	2020	71	41-100
Sodium (ppm)	2020	46	37–61
Vanadium (ppb)	2019	18.5	15-22

OTHER UNREGULATED SUBSTANCES³

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH
Bromide (ppb)	2019	81.5	43–120
Dibromoacetic Acid (ppb)	2021	0.70	ND-1.0
HAA6Br (ppb)	2019	1.65	1.58–1.73
HAA9 (ppb)	2019	2.05	1.82-2.28

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Regulatory Action Level):

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA. MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in

or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

¹These are natural deposits.

regulated.

 ² There is currently no MCL for hexavalent chromium. The previous MCL of 10 ppb was withdrawn on September 11, 2017.
³ Unregulated contaminant monitoring helps U.S. EPA and the State Water

Resources Control Board to determine

where certain contaminants occur and

whether the contaminants need to be

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

µS/cm (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.

MILLION

BY THE NUMBERS

The number of Americans who receive water from a public water system.

The number of miles of drinking water distribution mains in the U.S.

The number of gallons of water produced daily by public water systems in the U.S.

135 BILLION The amo maintain U.S.

The amount of money spent annually on maintaining the public water infrastructure in the U.S.

The number of active public water systems in the U.S.

199 THOUSAND The number of highly trained and licensed water professionals serving in the U.S.

The age in years of the world's oldest water, found in a mine at a depth of nearly two miles.

